Neuron:修复神经纤维的关键蛋白已被“捕获”

2019-08-11 纪大乙 生物探索

近日,德国神经退行性疾病中心(DZNE)的科学家们在《Neuron》杂志上发表了一项重磅研究结果:一组有助于受损神经细胞再生的蛋白质已被找到!

近日,德国神经退行性疾病中心(DZNE)的科学家们在《Neuron》杂志上发表了一项重磅研究结果:一组有助于受损神经细胞再生的蛋白质已被找到!

先前的研究认为,中枢神经系统的神经元在找到自身目标细胞完成突触建立后便会关闭自身的生长能力。然而,最新研究表明,成年神经细胞竟然拥有再生和修复损伤的能力,这一点与新生神经细胞类似。这项成年神经元的复兴机制是由波兰大学科学家Frank Bradke教授课题组发现的。

Bradke表示,尽管这一研究结果的发现是惊人的。但还要另提一句的是成年神经细胞和新生神经细胞的生长机制是不同的。研究人员们发现在新生神经细胞中启动生长的某些蛋白质至关重要,不论在哪个发育阶段,这些蛋白质都是生长能力的关键调节因子。它们作用于细胞的支持结构,从而触发动态过程,同时这也是细胞生长和再生的先决条件。

然而事实上,神经元只在胚胎发育阶段表现出生长能力。在这个阶段,神经元形成轴突,以便连接和传输信号。而当神经系统发育到成年阶段时,神经元受伤后,其生长和再生能力就会减弱。只有“外围”的神经元,例如手臂和腿部的神经元,才有修复受损连接的可能性。但是如果脊髓中的轴突被切断,神经元也就不会再生。因此,神经冲动的通路异常,往往可能导致瘫痪和其他严重残疾发生。

“很长一段时间以来,我们一直想知道是否有可能重新激活神经细胞在早期发育阶段表现出来的生长潜能,复刻这一过程可能是触发成年神经元再生的方法。”该研究主要作者、Bradke课题组的博士后研究员Sebastian Dupraz说。

那么新生神经细胞生长的关键蛋白到底是什么呢?



图片来源:DZNE

近年来,波恩的科学家们发现了影响神经元生长的各种因素。肌动蛋白解聚因子/丝切蛋白家系(actin depolymerizing factor/cofilins,ADF/cofilin)的蛋白质被证明在神经元的生长中发挥了关键的作用。在胚胎发育的过程中,这些蛋白分子控制细胞突起的形成,最终演变成轴突。“在我们的研究中,我们发现这些蛋白质分子也能促进成年神经元的生长和受损后再生。”Dupraz说。

在该研究中,研究人员们观察了小鼠和大鼠的背根神经节,并利用延时成像、体内成像和全载分析表明,神经元的轴突再生是由肌动蛋白周转增加引起的。肌动蛋白分子属于分子支架的一种,赋予细胞形态和稳定性。ADF/cofilin通过切断肌动蛋白活性,改变细胞结构,控制肌动蛋白的转化率,维持脊髓损伤后神经元轴突再生。

这些发现揭示了肌动蛋白动力学调节在轴突再生过程中的核心作用,并阐明了中枢神经系统创伤后轴突生长的核心机制。因此,肌动蛋白或为未来再生干预的关键过程。

至于研究者为什么选择了背根神经节,是因为背根神经节连接脊髓和周围神经系统。背根神经节的神经细胞有两个轴突:一个中心轴突和一个外围轴突。众所周知,周围轴突损伤后可再生。其实中央轴突也可以再生,但前提是它的外围对应物此前受到过损害。但至于为什么存在这样的分子机制就尚不得知了,Bradke表示“我们将在未来对此进行研究”。

总之该项研究的发现为未来的治疗奠定了基础,有望加快脊髓损伤后治疗。但神经元生长和再生的发现是一个漫长的过程,真正研究明白了、落地到临床上,人们还有很长的路要走,还请相信科学,耐心等待!

原始出处:
AndreaTedeschi, SebastianDupraz, MicheleCurcio, et al. ADF/Cofilin-Mediated Actin Turnover Promotes Axon Regeneration in the Adult CNS. Neuron. Aug 2019.

作者:纪大乙



版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (4)
#插入话题
  1. 2019-12-30 by2021
  2. 2019-08-11 坚强007

    向科研人员致敬!!!向科研人员致敬!!!

    0

相关资讯

Nat Neurosci:创建神经细胞?用结缔组织细胞就够了

美因兹大学(Mainz University)医学中心的研究人员在《Nature Neuroscience》杂志发表神经再生领域重要发现。

PNAS:吃饱了依然停不住?PNAS在大脑深处找到原因,两类神经元在“打架”

美食太诱人、吃饱了再减肥、这类食物不会胖……有时候我们真的控制不住寄几,即便吃饱了还会继续吃吃吃。这是为什么?《PNAS》期刊给出了一份答案:大脑中促进进食的神经细胞“打赢”了阻止进食的神经细胞!

Nat Commun:隐性听力损失能够选择性的损伤高噪音环境下的神经适应性

暴露在一个单独的高噪音环境下就能损伤而我听毛细胞和听觉神经纤维之间的突触,从而引起隐性听力损失(HHL),并且不能被听觉调查检测到。最近,有研究人员调查了噪音诱导的HHL对听力功能的影响,具体是通过在安静和噪音不同环境阶段中,听觉中脑神经细胞对不同环境的适应能力。研究人员发现,来源自接触噪音的小鼠的神经细胞表现出了对声音环境适应能力减弱情况,即在上述环境中传达了更少的声音强度信息,并且对波动声音环

世界卒中日|这个病,每分钟杀死190万个神经细胞

10月29日是每年的世界卒中日,今年的主题是“战胜卒中,再立人生”。

Nature Neuroscience:不断接近的阿尔兹海默真相

科学家们正在研究免疫细胞激活在阿尔茨海默病中的作用,最新Nature Neuroscience文章表明,大脑中有缺陷的免疫细胞会导致阿尔茨海默病。

Cell Rep:什么物质能阻止神经细胞退化?

杜克-新加坡国立大学医学院(Duke-NUS Medical School)的一项研究发现,以在基因调控中的作用而闻名的多蛋白“整合子复合体(Integrator complex)”成员,对于果蝇的大脑健康发育至关重要。这一发现对进一步理解和治疗人类神经发育障碍具有指导意义。