再生医学:点燃治愈脊髓损伤的新希望

2017-11-11 甘晓 再生医学

当皮肤、骨骼、口腔黏膜等部位受伤时,因为损伤区有利于再生微环境的产生,只需要一段时间的治疗这些部位就能再生愈合,并且恢复到健康状态。然而,损伤的脊髓部位形成不利于神经再生的微环境,神经再生很难发生。因此,脊髓损伤被认为是难治愈的疾病。

当皮肤、骨骼、口腔黏膜等部位受伤时,因为损伤区有利于再生微环境的产生,只需要一段时间的治疗这些部位就能再生愈合,并且恢复到健康状态。然而,损伤的脊髓部位形成不利于神经再生的微环境,神经再生很难发生。因此,脊髓损伤被认为是难治愈的疾病。

在北京举行的香山科学会议第609次学术讨论会上,科学家与临床医生齐聚一堂,共商脊髓损伤修复的关键科学问题。他们认为,再生医学将为脊髓损伤修复提供新思路。

最具挑战性的医学难题

脊髓损伤修复是目前最具挑战性的医学难题。早在公元前1700年,人类就认识到脊髓损伤是不能治愈的疾病。而3700年后的今天,脊髓损伤的临床治疗手段依然进展甚微。“现有的治疗方案很大程度还停留在脊柱固定减少继发损伤及康复训练提高生活自理能力等方面,对促进神经功能恢复却没有有效的方法。”会议执行主席、中科院遗传与发育生物学研究所研究员戴建武说。

据估算,中国现有创伤性脊髓损伤患者超过200万,每年新增10至14万人。作为大脑和外周神经系统之间信息沟通的主要载体,脊髓遭到损伤后往往严重致残,给家庭和社会带来了沉重的负担。
因此,科学家们认为,利用再生医学手段,面对脊髓损伤修复的重大挑战,不仅具有科学上的意义,更是国家和人民的重大民生需求。

“内外”发力促神经生长

从再生医学角度看,脊髓损伤后脊髓神经组织坏死、液化及瘢痕或空洞的形成是阻碍自身神经再生修复的主要障碍。为解决这一障碍,科学家们围绕神经元内、外两个方面开展了诸多工作。
戴建武介绍,其中,“内”指的是调控神经元内源性的再生能力促进轴突生长。

而“外”则指通过智能生物支架材料等外源性策略营造有利于神经干细胞分化的微环境。“鉴于脊髓损伤后形成的微环境不利于神经轴突再生和神经元发生,近二十年来产生了许多针对微环境中某种或多种特定抑制神经再生信号来重塑抑制微环境的研究。”他说。在中国科学院“干细胞与再生医学研究”先导专项支持下,戴建武团队研制了基于胶原蛋白的神经再生支架,开展了脊髓损伤临床研究。2015年,首例神经再生胶原支架移植手术由中国武警脑科医院脊髓脊柱外科主任汤锋武完成。

此次会议上,汤锋武表示,通过术中探查,清理脊髓瘢痕组织,利用生物胶原支架和间充质干细胞移植,有助于促进轴突生长、抑制纤维瘢痕形成。“这一方案治疗完全性脊髓损伤是安全、可行的。”他说。

未来空间广阔

与会专家认为,通过生物材料、生长因子与干细胞重建有利于神经再生的微环境已成为利用外源途径修复脊髓损伤的重要策略。其中,干细胞来源及标准化研究、再生因子的种类确定及标准化研究、支架材料的智能化及标准化研究等科学问题,将成为未来研究的重点。

会议上,如何修复神经运动功能也受到专家们的关注。会议执行主席、中科院院士赵继宗指出,近年来,人工智能在脊髓损伤康复研究中优势凸显。“植入式神经刺激器有望为修复脊髓损伤另辟蹊径。”赵继宗表示。例如,治疗疼痛的脊髓电刺激器和呼吸控制的膈肌起搏器已经进行临床研究;骶前神经根电刺激器调控膀胱功能,解决脊髓损伤患者排尿功能障碍取得初步疗效。此外,外骨骼机器人能够辅助肢体瘫痪的脊髓损伤患者重新站立自主行走。

总之,与会专家一致认为,再生医学的迅速发展为脊髓再生修复提供了新视角,当前应集众家之长,加大力度推动基础研究成果向临床转化迈进。

作者:甘晓



版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (4)
#插入话题
  1. 2017-11-16 半夏微凉

    学习了谢谢分享

    0

  2. 2017-11-11 changjiu

    学习一下谢谢

    0

相关资讯

医学奇迹:前臂上再造的耳朵成功移植患者头部

昨日上午,西安交通大学第一附属医院举行新闻通气会,向媒体通报了该院开展的一项重大创新技术: 3月29日,郭树忠教授和舒茂国教授带领的整形美容颌面外科团队成功将前臂预制的耳朵移植到了患者头部。因为车祸,导致右侧头部严重外伤,经过抢救,患者吉某的生命保住了,但少了一只耳朵。吉某曾到多家医院就诊,接诊医师都束手无策。经多方打听,他在西安交大一附院找到了全国著名的耳再造专家、整形美容颌面外科的郭树忠教授。

Nature:为什么细胞过密,状态就不好了?

如今,来自新加坡生物力学研究所(MBI)和法国Jacques Monod研究所(IJM)、国家科学研究中心(CNRS)、巴黎狄德罗大学,以及英国牛津大学居里研究所的研究学者们从人工培养的单层上皮细胞那里得到了一些重要启示。细胞层是一个具有物理性破绽的结构,这些破绽导致了部分细胞的“无辜”死亡。组织中经常发生细胞溢出现象。损伤、凋亡、死亡的细胞会被组织踢出来,就连正常健康的细胞有时也会被排挤出来。目

猪肉养殖大户转行生产人体器官?

(图片摘自www.sciencealert.com)2017年4月17日 生物谷BIOON/---史密斯菲尔德食品公司是是全球最大的猪肉生产商,但该公司不仅仅满足于养殖肉食猪,并于4月12日宣布,计划将部分猪作为研究对象,探究其潜在的医学价值,其中包括人体移植的组织器官再生。目前没有猪器官移植人成功的案例,但是最新科研成果及前沿技术(例如基因编辑技术)的使用,使跨物种移植显得更为可能。要想

Dev Dyn:泪腺发育:从信号传导互作到再生医学!

美国哥伦比亚大学眼科Zhang X教授近日在Dev Dyn发表了一篇综述,系统的介绍了泪腺的发育。从外在信号传导相互作用到控制泪腺形态发生的内在转录网络,在到治疗干眼病的再生医学领域,从多个角度探究泪腺发育的过程。

Nature Nanotechnology:再生医学突破!这一小小的芯片,可在一秒的接触内实现皮肤细胞的重编程

8月7日,《Nature Nanotechnology》期刊在线发表一篇文章,揭示了一种非侵入性重编程皮肤细胞的新技术。来自于俄亥俄州立大学再生医学和细胞疗法中心的研究团队开发出一个可移植、拇指指甲大小的硅芯片,能够在一秒钟的接触内启动皮肤细胞的重编程,将其转变成体内所需的任何一种其他类型的细胞。

PNAS:再生医学新突破!干细胞可定向诱导?

美国科学家发现,故意改变细胞的含水量调控细胞体积,影响细胞的硬度,这可能影响干细胞分化的方向,这一发现将大大影响未来干细胞在治疗中的应用。