PNAS:干细胞研究新进展或可加快治疗运动神经元疾病

2012-04-10 towersimper 生物谷

来自英国爱丁堡大学、伦敦大学国王学院、美国哥伦比亚大学和旧金山大学的科学家们利用前沿干细胞研究方法取得一项研究突破,从而可能会加快人们开发出治疗运动神经元疾病(motor neurone disease, MND)的新方法。 中国细胞生物学学会干细胞生物学分会2012年春季会议 他们从一名患有遗传性MND疾病的病人身上提取皮肤细胞,并利用提取到的皮肤细胞构建出运动神经元。 他们证实在90%以

来自英国爱丁堡大学伦敦大学国王学院、美国哥伦比亚大学旧金山大学的科学家们利用前沿干细胞研究方法取得一项研究突破,从而可能会加快人们开发出治疗运动神经元疾病(motor neurone disease, MND)的新方法。

中国细胞生物学学会干细胞生物学分会2012年春季会议

他们从一名患有遗传性MND疾病的病人身上提取皮肤细胞,并利用提取到的皮肤细胞构建出运动神经元。

他们证实在90%以上的MND病例中发现的蛋白TDP-43异常导致运动神经元死亡。这也是科学家们首次能够观察到蛋白TDP-43异常直接对人运动神经元产生影响。相关研究结果于2012年3月26日发表在PNAS期刊上。

MND疾病是一种破坏性的、不可治疗的和最终致命性的疾病,是由于控制运动、语言和呼吸的运动神经元的渐近性丢失而导致的。

爱丁堡大学教授Siddharthan Chandran说,“利用病人干细胞在盘碟中构建MND疾病模型有助于我们研究这种可怕疾病的病因以及加快药物开发。” (生物谷:towersimper编译)

doi:10.1073/pnas.1202922109
PMC:
PMID:

Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability

Bilada Bilican, Andrea Serio, Sami J. Barmada, Agnes Lumi Nishimura, Gareth J. Sullivan, Monica Carrasco, Hemali P. Phatnani, Clare A. Puddifoot, David Story, Judy Fletcher, In-Hyun Park, Brad A. Friedman, George Q. Daley, David J. A. Wyllie, Giles E. Hardingham, Ian Wilmut, Steven Finkbeiner, Tom Maniatis, Christopher E. Shaw, and Siddharthan Chandran

Transactive response DNA-binding (TDP-43) protein is the dominant disease protein in amyotrophic lateral sclerosis (ALS) and a subgroup of frontotemporal lobar degeneration (FTLD-TDP). Identification of mutations in the gene encoding TDP-43 (TARDBP) in familial ALS confirms a mechanistic link between misaccumulation of TDP-43 and neurodegeneration and provides an opportunity to study TDP-43 proteinopathies in human neurons generated from patient fibroblasts by using induced pluripotent stem cells (iPSCs). Here, we report the generation of iPSCs that carry the TDP-43 M337V mutation and their differentiation into neurons and functional motor neurons. Mutant neurons had elevated levels of soluble and detergent-resistant TDP-43 protein, decreased survival in longitudinal studies, and increased vulnerability to antagonism of the PI3K pathway. We conclude that expression of physiological levels of TDP-43 in human neurons is sufficient to reveal a mutation-specific cell-autonomous phenotype and strongly supports this approach for the study of disease mechanisms and for drug screening.

作者:towersimper



版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (4)
#插入话题

相关资讯

Cur Biology:生物学家确定一种防止神经退化的关键酶Nmmat

近日,国际著名杂志Current Biology在线刊登了宾夕法尼亚大学研究人员的最新研究成果,文章中,作者阐述了一个新的神经损伤的动物模型揭示了一种名为Nmnat酶在神经纤维修复和神经保护过程中的关键作用。生物学家在成年的黑腹果蝇身上发现这种模型。Nancy Bonini 说,“我们使用果蝇的基本能力去了解在严重的损伤情况下,果蝇的神经元是如何受损的。Nancy Bonini是这项研究的主要作者

Science:美国研究人员揭示人脑神经纤维排列方式

“编织”的大脑。图片来源:M. D. Van Wedeen 对于肉眼来说,人类大脑最显著的特点便是其波浪般的肿块和沟槽模式。 然而发表在3月30日出版的美国《Science》杂志上的一项最新研究指出,这些曲线当中实际上是由大约成直角的彼此交叉的神经纤维构成的网格(如图所示)。 研究人员利用一种新近开发出的方法——名为扩散光谱成像技术——推断了人类活体大脑中的神经纤维的位置。 这些扫描揭示了

BBRC:日本研究人员揭示大脑如何调节食欲

日本自治医科大学教授矢田俊彦率领的研究小组日前宣布,他们发现了人体进食后部分物质如何使大脑产生吃饱的感觉。进一步的研究有望让研究人员开发出新疗法治疗暴食和肥胖等病症。 此前的研究已发现,人体进食时,在作为食欲中枢的丘脑下部室旁核中,一种称为“nesfatin-1”的蛋白质会增加,让人产生吃饱感。但具体机制如何运作一直是个谜。 研究人员在小鼠身上进行实验来探究这一机制,他们从小鼠的室旁核中取出脑

Nat Neurosci:研究发现秀丽隐杆线虫应对氧浓度行为调节机制

《Nature Neuroscience》3月4日在线发表英国剑桥大学的研究人员的研究报告,该报告报道了秀丽隐杆线虫应对环境中氧浓度变化的行为调节机制。这项研究帮助我们在了解动物的持续防御行为方面迈出重要的一步。 对所有生物而言,每时每刻都有一大堆的环境信息需要应对,因此其感知系统会进化产生相应的适应机制以对大多数环境刺激作出快速反应或忽略某些刺激。一些有害刺激能在很长时间内被生物所记住,但是,

Neuropsychopharmacol:兴奋剂效果“因鼠而异”

加拿大不列颠哥伦比亚大学研究人员3月28日在美国《神经精神药理学》杂志上发表报告称,他们以实验鼠为对象进行了一项刺激类药物测试。在实验中,老鼠可以选择“容易任务”或“困难任务”,选择“困难任务”并且成功通过的老鼠会得到加倍的奖励。研究人员发现,有一些老鼠选择“困难任务”的次数明显多于他们的“懒惰”同伴,研究人员将它们定义为“自我驱动强烈”的老鼠。 之后,研究人员给这两类老鼠都注射刺激类药物安非他

J. Neurosci.:美揭示控制体重和能量的细胞机理

近日,据美国物理学家组织网报道,美国耶鲁大学科学家发现了一种关键细胞机理,能帮大脑控制我们每天的食物摄入量、体重以及干活时能不能精力充沛。相关论文发表在《神经科学杂志》(The Journal of Neuroscience)上。 下丘脑部位的神经元调节着体温、摄食等基本机能,维持着身体的能量平衡,它们发出的轴突遍布于整个神经系统。这里有两种功能相反的神经元,一种是黑色素浓集激素(MCH)神经元