综述|长链非编码RNA在脑缺血再灌注损伤炎症反应中研究进展

2024-09-09 中国神经精神疾病杂志 中国神经精神疾病杂志

从CIRI的机制出发,对近年来发现的影响CIRI炎症反应中LncRNA的表达及其作用机制做一总结,旨在为CIRI的治疗提供新的治疗靶点和研究思路。

摘 要 脑缺血再灌注损伤(cerebral ischemia/reperfusion injury,CIRI)是指脑缺血后再恢复血流时导致神经功能缺损症状进一步加重的现象,严重影响患者的预后。近年来研究发现长链非编码RNA(long non-coding RNA,LncRNA)与CIRI后的炎症反应密切相关。从CIRI的机制出发,对近年来发现的影响CIRI炎症反应中LncRNA的表达及其作用机制做一总结,旨在为CIRI的治疗提供新的治疗靶点和研究思路。

关键词

长链非编码RNA;微小RNA;脑缺血再灌注损伤;炎症反应

缺血性脑卒中(ischemic stroke,IS)是我国国民死亡和非外伤性致残的首要原因,静脉溶栓治疗是临床公认的有效恢复缺血脑组织血流供应的治疗方法[1],因有严格的时间窗限制,一旦溶栓治疗超过时间窗,则会引起脑缺血再灌注损伤(cerebral ischemia/reperfusion injury,CIRI)。CIRI的病理生理过程复杂,炎症反应是其中重要的一环。随着基因测序技术的发展,越来越多的研究证实长链非编码RNA(long non-coding RNA,LncRNA)在CIRI的炎症反应中发挥着重要作用,本文现对CIRI炎症反应主要相关LncRNA及其涉及的机制综述。

1 脑缺血再灌注损伤中的炎症反应

CIRI是指缺血脑组织在恢复血流灌注后,脑损伤进一步加重的病理现象[2],其特征是高度相互关联的多种神经病理学级联事件,主要包括活性氧产生、炎性细胞因子表达、兴奋性神经毒性、钙超载和线粒体损伤等过程[3],最终导致一系列神经功能缺损症状加重。强烈而持久的炎症反应是其中极为重要的一环。

脑缺血再灌注后的炎症反应会继发神经细胞水肿、血脑屏障破坏和神经元损伤[4],最终引发缺血级联反应。缺血级联反应一方面诱发缺血区域神经元离子稳态破坏,引起缺血区域分子之间信号转导异常;另一方面受兴奋性毒性影响的细胞会释放损伤相关分子(damage-associated molecular patterns,DAMP)激活神经元和神经胶质细胞细胞膜上的受体,促使M1型小胶质细胞极化,激活核因子-кB(nuclear factor-кB,NF-кB)触发编码促炎因子的基因表达,释放一系列的炎症因子,如白细胞介素-1β(interleukin-1β,IL-1β)、白细胞介素-6(interleukin-6,IL-6)、白细胞介素-18(interleukin-18,IL-18)和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)[5]。由于炎性因子的释放,使缺血环境中的免疫细胞向内迁移,中性粒细胞激活诱导型一氧化氮合酶(nitric oxide synthase,iNOS)而加重神经损伤[6]。在缺血再灌注后期,局部神经元产生的白细胞介素-4(interleukin-4,IL-4)将小胶质细胞从促炎型M1表型向抗炎型M2表型转化,释放抗炎因子白细胞介素-10(interleukin-10,IL-10)和表皮生长因子(epidermal growth factor,EGF)及脑源性生长因子(brain-derived neurotrophic factor,BDNF)等活性物质,促进神经元再生和神经功能恢复(图1)。因此,减少炎性因子的释放和促进抗炎因子的分泌以减轻炎症反应对CIRI的结局有着积极的作用。

图片

图1   CIRI炎症反应机制 人脑、细胞和神经元图片引用于“Figdraw”(网址:https://wwww.figdraw.com/static/index.html#/)Fig.1   CIRI inflammatory response mechanism map

2 LncRNA在脑缺血再灌注损伤的炎症反应中的作用

2.1 LncRNA LncRNA是人类中非常重要的一类长度超过200个核苷酸的非编码RNA,具有高度特异性和差异稳定性[7]。LncRNA可作为微小RNA(microNRNA,miRNA)的前体和宿主,通过竞争性内源性RNA(competitive endogenous RNA,ceRNA)作用直接或间接影响miRNA的表达,调控靶向mRNA的转录[8],形成LncRNA-miRNA-mRNA调控网络。在CIRI发生后,LncRNA表达发生变化,并通过影响miRNA的表达从而影响其下游炎症因子mRNA的表达,因此,LncRNA可作为减轻CIRI炎症反应的治疗靶点。

2.2 LncRNA减轻脑缺血再灌注损伤的炎症反应 WANG等[9-10]发现LncRNA NKILA在大脑中动脉阻塞/再灌注(middle cerebral artery occlusion/reperfusion,MCAO/R)的大鼠和氧糖剥夺/复氧(oxygen sugar deprivation/reoxygenation,OGD/R)的神经元细胞中表达上调,并阻断NF-кB,NF-кB的阻断可进一步下调IL-1β、IL-6和TNF-α水平来减轻神经炎症反应[11]

小核仁RNA宿主基因12 (small nucleolar RNA host gene 12,SNHG12)在OGD/R的大鼠肾上腺嗜铬细胞瘤细胞中表达上调,并通过靶向miR-199a上调沉默信息调节因子1(silent information regulator 1,SIRT1)表达,上调的SIRT1激活腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)通路减轻CIRI[12]。AMPK的神经保护作用也在CHENG等[13]研究中被证实,能通过逆转NF-кB释放减轻炎症反应。

同样上调的LncRNA KLF3反义RNA1(KLF3 antisense RNA1,KLF3-AS1)可以通过海绵化miR-206上调泛素化蛋白酶体22(Ubiquitinated proteasome 22,USP22)从而促进SIRT1蛋白去泛素化,进一步抑制TNF-α、IL-6和单核细胞趋化蛋白1(active monocyte chemotactic protein 1,mcp-1)的表达[14]。同时SIRT1还能有效的抑制NOD样受体热蛋白结构域蛋白3(NOD-like receptor protein 3,NLRP3)炎症小体的激活来减轻CIRI后的神经炎症[15]

2.3 LncRNA加重脑缺血再灌注损伤的炎症反应 张广健等[16]研究表明转移相关肺腺癌转录本1(metastasis-associated lung adenocarcinoma transcript 1,MALAT1)在CIRI的体内外模型中高度上调并靶向抑制 miR-375的表达,而磷酸二酯酶4D(phosphodiesterase 4D,PDE4D)可作为miR-375的靶基因被上调,PDE4D则可通过上调TNF-α、IL-6和IL-1β的表达而加重CIRI炎症反应。转染低表达lncRNA MALAT1病毒的MCAO/R小鼠BDNF与酪氨酸激酶受体B(tyrosine kinase receptor B,TrkB)的表达量降低,并可能通过抑制其下游的细胞外信号调节激酶1/2(extracellular signal-regulated-kinase, ERK1/2)磷酸化激活而减轻细胞凋亡[17]。抑制ERK1/2磷酸化还可以抑制促炎因子IL-6和IL-1β的活性,同时增加抗炎因子IL-4和IL-10的水平[18],进一步说明MALAT可能通过BDNF/TrkB通路影响炎性因子的表达。

母源表达基因3(maternally expressed gene 3,MEG3)在体内外CIRI模型中上调并可以抑制miR-485表达,减少其与黑色素瘤缺失基因2(absent in melanoma 2,AIM2)的结合,使颅内AIM2表达增加。AIM2可以募集细胞凋亡样蛋白和含半胱氨酸的天冬氨酸蛋白水解酶-1形成多AIM2炎症小体,参与IL-1β和IL-18的成熟和分泌,是IS后神经炎性反应的关键介质[19]。此外,LncRNA MEG3还可以通过与Krüppel 样因子 4 (Krüppel sample factor 4,KLF4)结合抑制其蛋白表达从而抑制抗炎因子的产生[20]

牛磺酸上调基因1(taurine up-regulated1,TUG1)的表达在OGD/R诱导的人神经母细胞瘤细胞中显著上调,可通过抑制其分子海绵miR-200a-3p的表达来激活NLPR3炎症小体的表达,加重CIRI的炎症反应[21]。TUG1还可以抑制其ceRNA miR-410来减轻miR-410对叉头盒转录因子O3(forkhead box O3,FOXO3)的抑制作用从而上调FOXO3的表达[22]。FOXO3 是一种在海马体、皮质和小脑中广泛表达的细胞损伤相关蛋白,可以结合鞘氨醇激酶1(sphingosine kinase 1,SPHK1)启动子并激活其转录,进一步促进TNF-α、IL-6和IL-1β的表达而加重神经炎症[23]。XING[24]的实验表明上调的TUG1还可通过靶向负调控miR-204-5p来上调环氧合酶2(cyclooxygenase2, COX2)和炎症介质前列腺素2(prostaglandin 2,PGE2)的表达,进一步加重神经炎症反应。上述各项均证实LncRNA TUG1能通过各种途径加重CIRI。

还有更多的LncRNA可以通过多种不同的通路影响CIRI的炎症反应,其具体作用机制/通路见表1。

表1   LncRNA在CIRI的炎性反应中的作用Tab.1   Mechanisms of action of LncRNAs modulating the inflammatory response to CIRI

图片

注:表格中“↑”表示表达量上调,“↓”表示表达量下调。

3 LncRNA在脑缺血再灌注损伤治疗中的应用

随着越来越多的LncRNA被证实可通过各种作用途径影响着CIRI,近年来,在此基础上也发现部分药物通过影响LncRNA的表达,用于干预CIRI。①MEG3在CIRI后上调会加重神经炎症反应,丙泊酚可显著降低LncRNA MEG3的表达,抑制NF-kB活性及其磷酸化激活,并抑制NF-kB与细胞核中IL-6和TNF-α启动子结合,减轻脂多糖(lipopolysaccharide,LPS)诱导的细胞毒性及炎性因子的生成[2036]。②GAS5在CIRI后上调并促进炎性因子释放加重炎症反应,肉苁蓉的主要活性成分肉苁蓉总苷可以抑制LncRNA GAS5的表达,通过下调TNF-α、IL-6的表达来而减轻CIRI炎症反应[37]。③H19在CIRI后表达上调会加重神经炎症反应,胆绿素(biliverdin,BV)和电针可下调CIRI时LncRNA H19的表达来减轻炎症反应。其中BV[38]可下调MACO/R大鼠中LncRNAH19的表达来减轻LncRNAH19对miR-181b-5p的海绵吸附作用,并下调miR-181b-5p的靶基因内皮细胞特异性分子1(endothelial cell-specific molecule 1,Esm1)的表达而减轻CIRI的炎症反应;电针(electroacupuncture,EA)[39]对MCAO/R大鼠进行电针治疗能下调LncRNA H19的表达,并通过1-磷酸鞘氨醇受体2(Sphingosine 1-phosphate receptor 2,S1PR2)/TLR4/NLRP3信号通路减轻神经炎症反应。

4 结论与展望

CIRI的病理生理过程非常复杂,炎症反应是其中重要且关键的一环,炎症反应的重要作用,长久一直以来人们积极寻找有效的治疗和改善预后的方法。LncRNA的表达可严重影响CIRI的发展与预后,近年来越来越多的研究证实在LncRNA层面上进行干预能显著减轻MCAO/R大鼠和OGD/R细胞的炎症因子表达。本综述总结了近五年来国内外LncRNA对CIRI后炎症反应的影响,有很多药物能通过靶向LncRNA的表达来改善CIRI预后,但大部分的研究还停留在动物和分子阶段,需进行严密的基础和临床对照实验来证实。

参考文献:

1. 马浩源, 赵岩, 胡明, 等. SOFIA远端通路导管直接血栓抽吸和支架取栓治疗早期急性缺血性脑卒中疗效比较[J]. 中国神经精神疾病杂志, 2020, 46(4): 216-220.

2. LIM S,KIM T J,KIM Y J,et al. Senolytic Therapy for Cerebral Ischemia-Reperfusion Injury[J]. Int J Mol Sci, 2021,22(21):11967.

3. CANDELARIO-JALIL E, DIJKHUIZEN R M, MAGNUS T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities[J]. Stroke, 2022, 53(5): 1473-1486.

4. PRZYKAZA L. Understanding the Connection Between Common Stroke Comorbidities, Their Associated Inflammation, and the Course of the Cerebral Ischemia/Reperfusion Cascade[J]. Front Immunol, 2021, 12: 782569.

5. GARCIA-BONILLA L, MOORE J M, RACCHUMI G, et al. Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice[J]. J Immunol, 2014,193(5): 2531-2537.

6. QUEK X C, THOMSON D W, MAAG J L, et al. lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs[J]. Nucleic Acids Res, 2015,43(Database issue):D168-D173.

7. DHARAP A, NAKKA V P, VEMUGANTI R. Effect of focal ischemia on long noncoding RNAs[J]. Stroke, 2012,43(10):2800-2802.

8. XIONG W, QU Y, CHEN H, et al. Insight into long noncoding RNA-miRNA-mRNA axes in myocardial ischemia-reperfusion injury: the implications for mechanism and therapy[J]. Epigenomics, 2019, 11(15): 1733-1748.

9. WANG M, JIANG Y M, XIA L Y, et al. LncRNA NKILA upregulation mediates oxygen glucose deprivation/re-oxygenation-induced neuronal cell death by inhibiting NF-kappaB signaling[J]. Biochem Biophys Res Commun, 2018, 503(4): 2524-2530.

10. GAO W, NING Y, PENG Y, et al. LncRNA NKILA relieves astrocyte inflammation and neuronal oxidative stress after cerebral ischemia/reperfusion by inhibiting the NF-kappaB pathway[J]. Mol Immunol, 2021,139:32-41.

11. GONG P, JIA H Y, LI R, et al. Downregulation of Nogo-B ameliorates cerebral ischemia/reperfusion injury in mice through regulating microglia polarization via TLR4/NF-kappaB pathway[J]. Neurochem Int, 2023,167:105553.

12. YIN W L, YIN W G, HUANG B S, et al. LncRNA SNHG12 inhibits miR-199a to upregulate SIRT1 to attenuate cerebral ischemia/reperfusion injury through activating AMPK signaling pathway[J]. Neurosci Lett, 2019, 690: 188-195.

13. CHENG Y, JIANG Y, SUN Y, et al. The role of long non-coding RNA SNHG12 in neuroprotection following cerebral ischemic injury[J]. Neuroreport, 2019, 30(14): 945-952.

14. XIE X, CAO Y, DAI L, et al. Bone marrow mesenchymal stem cell-derived exosomal lncRNA KLF3-AS1 stabilizes Sirt1 protein to improve cerebral ischemia/reperfusion injury via miR-206/USP22 axis[J]. Mol Med, 2023, 29(1): 3.

15. WANG J, GUO M, MA R, et al. Tetrandrine alleviates cerebral ischemia/reperfusion injury by suppressing NLRP3 inflammasome activation via Sirt-1[J]. PeerJ, 2020, 8: e9042.

16. ZHANG G, WANG Q, SU D, et al. Long Non-coding RNAMALAT1 Knockdown Alleviates Cerebral Ischemia/Reperfusion Injury of Rats Through Regulating the miR-375/PDE4D Axis[J]. Front Neurol, 2020,11:578765.

17. 樊帅帅, 宋磊军, 蔺聪, 等. 下调lncRNA-MALAT1表达对新生大鼠缺氧缺血性脑损伤的保护作用[J]. 中国临床神经外科杂志, 2022, 27(5): 376-379.

18. HAN M, HU L, CHEN Y. Rutaecarpine may improve neuronal injury, inhibits apoptosis, inflammation and oxidative stress by regulating the expression of ERK1/2 and Nrf2/HO-1 pathway in rats with cerebral ischemia-reperfusion injury[J]. Drug Des Devel Ther, 2019, 13: 2923-2931.

19. LIANG J, WANG Q, LI J Q, et al. Long non-coding RNA MEG3 promotes cerebral ischemia-reperfusion injury through increasing pyroptosis by targeting miR-485/AIM2 axis[J]. Exp Neurol, 2020, 325: 113139.

20. LI T, LUO Y, ZHANG P, et al. LncRNA MEG3 regulates microglial polarization through KLF4 to affect cerebral ischemia-reperfusion injury[J]. J Appl Physiol (1985), 2020,129(6):1460-1467.

21. YIN M, CHEN W P, YIN X P, et al. LncRNA TUG1 Demethylated by TET2 Promotes NLRP3 Expression, Contributes to Cerebral Ischemia/Reperfusion Inflammatory Injury[J]. ASN Neuro, 2021,13:523093137.

22. HE Z, ZHAO Y, ZHU Y, et al. Interfering TUG1 Attenuates Cerebrovascular Endothelial Apoptosis and Inflammatory injury After Cerebral Ischemia/Reperfusion via TUG1/miR-410/FOXO3 ceRNA Axis[J]. Neurotox Res, 2022, 40(1): 1-13.

23. ZHOU F, WANG Y K, ZHANG C G, et al. miR-19a/b-3p promotes inflammation during cerebral ischemia/reperfusion injury via SIRT1/FoxO3/SPHK1 pathway[J]. J Neuroinflammation, 2021, 18(1): 122.

24. XIANG P, HU J, WANG H, et al. miR-204-5p is sponged by TUG1 to aggravate neuron damage induced by focal cerebral ischemia and reperfusion injury through upregulating COX2[J]. Cell Death Discov, 2022, 8(1): 89.

25. WANG J, FU Z, WANG M, et al. Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis[J]. Neurochem Res, 2021,46(8):2167-2180.

26. XU J, HUANG X, LIU S, et al. The protective effects of lncRNA ZFAS1/miR-421-3p/MEF2C axis on cerebral ischemia-reperfusion injury[J]. Cell Cycle, 2022, 21(18): 1915-1931.

27. ZHANG Y, ZHANG Y. lncRNA ZFAS1 Improves Neuronal Injury and Inhibits Inflammation, Oxidative Stress, and Apoptosis by Sponging miR-582 and Upregulating NOS3 Expression in Cerebral Ischemia/Reperfusion Injury[J]. Inflammation, 2020,43(4):1337-1350.

28. JIANG Z, LIU M, HUANG D, et al. Silencing of Long Noncoding RNA GAS5 Blocks Experimental Cerebral Ischemia-Reperfusion Injury by Restraining AQP4 Expression via the miR-1192/STAT5A Axis[J]. Mol Neurobiol, 2022,59(12):7450-7465.

29. CHEN C, WANG L, WANG L, et al. LncRNA CASC15 Promotes Cerebral Ischemia/Reperfusion Injury via miR-338-3p/ETS1 Axis in Acute Ischemic Stroke[J]. Int J Gen Med, 2021, 14: 6305-6313.

30. WANG C, SHEN N, GUO Q, et al. YAP/STAT3 inhibited CD8(+) T cells activity in the breast cancer immune microenvironment by inducing M2 polarization of tumor-associated macrophages[J]. Cancer Med, 2023,12(15):16295-16309.

31. WEI L, PENG Y, YANG X J, et al. Knockdown of long non-coding RNA RMRP protects cerebral ischemia-reperfusion injury via the microRNA-613/ATG3 axis and the JAK2/STAT3 pathway[J]. Kaohsiung J Med Sci, 2021, 37(6):468-478.

32. CAO T, LIU Q, PAN M, et al. [LncRNA SNHG8 inhibits miR-494-3p expression to alleviate cerebral ischemia-reperfusion injury in mice][J]. Nan Fang Yi Ke Da Xue Xue Bao, 2023,43(12): 2015-2022.

33. ZHANG S, SUN W C, LIANG Z D, et al. LncRNA SNHG4 Attenuates Inflammatory Responses by Sponging miR-449c-5p and Up-Regulating STAT6 in Microglial During Cerebral Ischemia-Reperfusion Injury[J]. Drug Des Devel Ther, 2020,14:3683-3695.

34. WANG L, TAN Y, ZHU Z, et al. ATP2B1-AS1 Promotes Cerebral Ischemia/Reperfusion Injury Through Regulating the miR-330-5p/TLR4-MyD88-NF-kappaB Signaling Pathway[J]. Front Cell Dev Biol, 2021, 9: 720468.

35. LI H, TANG C, WANG D. LncRNA H19 promotes inflammatory response induced by cerebral ischemia-reperfusion injury through regulating the miR-138-5p-p65 axis[J]. Biochem Cell Biol, 2020,98(4):525-536.

36. ZHANG F, WANG Z, SUN B, et al. Propofol Rescued Astrocytes from LPS-induced Inflammatory Response via Blocking LncRNA-MEG3/NF-kappaB Axis[J]. Curr Neurovasc Res, 2022,19(1): 5-18.

37. 樊燕燕, 张石在. 肉苁蓉总苷通过调控lncRNA GAS5保护神经细胞缺血再灌注损伤[J]. 中成药, 2022, 44(7): 2320-2324.

38. LI J, JIANG H, PENG P, et al. Biliverdin modulates the long non-coding RNA H19/microRNA-181b-5p/endothelial cell specific molecule 1 axis to alleviate cerebral ischemia reperfusion injury[J]. Biomed Pharmacother, 2022, 153: 113455.

39. ZHANG H R, MA G Q, LV H Q, et al. Electroacupuncture Alleviates Cerebral Ischemia-reperfusion Injury by Regulating the S1PR2/TLR4/NLRP3 Signaling Pathway via m6A Methylation of lncRNA H19[J]. Curr Neurovasc Res, 2024,1(1):1-10.

【引用格式】李蕾,李馨蕊,王颖,等 . 长链非编码RNA在脑缺血再灌注损伤炎症反应中研究进展[J]. 中国神经精神疾病杂志,2024,50(5):305-309.

【Cite this article】LI L,LI X R,WANG Y,et al. Progress of long chain non-coding RNAs in the inflammatory response to cerebral ischemia-reperfusion injury[J]. Chin J Nervous Mental Dis,2024,50(5):305-309.

DOI:10.3969/j.issn.1002-0152.2024.05.010

作者:中国神经精神疾病杂志



版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (2)
#插入话题

相关资讯

Oncogene:去势抵抗性前列腺癌中神经内分泌分化的micromRNA决定因素研究

治疗诱导的神经内分泌前列腺癌(NEPC)是去势抵抗性前列腺癌(CRPC)的一种极具侵袭性的亚型;随着恩杂鲁胺(ENZ)和阿比特龙等高效雄激素受体(AR)通路抑制剂(API)的广泛使用,其发病率越来越高

Pharmaceutics:壳聚糖水凝胶掺杂PEG-PLA纳米颗粒来局部递送miRNA-146a和治疗变应性鼻炎

最近,有研究人员制备了一种递送miRNA-146的二元制剂,并通过调查其在过敏性鼻炎中的药效作用,评估了该核酸鼻腔递送系统。

Eur Urol:综合循环miR375和miR371的表达来鉴定恶性生殖细胞肿瘤中的畸胎瘤和活性生殖细胞恶性成分

活性生殖细胞恶性肿瘤表达高水平的特异性循环微RNA(miRNAs),其中包括了miR-371a-3p(miR371),而在畸胎瘤中检测不到。由于畸胎瘤存在恶性转化和畸胎瘤综合征不断增加的风险,因此迫切

Cell Death & Disease:MiRNA-671-5p通过靶向NFIA/CRYAB途径促进前列腺癌的发展和转移

前列腺癌(PCa)是男性恶性肿瘤致死的第二位死因,转移是PCa患者死亡的主要原因。微RNAs(miRNAs)在肿瘤的发展和转移中起着重要的调控作用。

Commun Biol:循环细胞外小体释放致癌性miR-424

细胞外小体(EVs)是细胞间信号转移的相关手段,能够促进致癌刺激的传播以及癌症患者的疾病演变和转移的扩散。

BMC Gastroenterology:miRNA-202-3p是诊断1型胃神经内分泌肿瘤的潜在新生物标志物

胃神经内分泌肿瘤(g-NENs)是一种罕见的恶性肿瘤,癌细胞主要来源于肠嗜铬样(ECL)细胞。WHO按照ECL细胞的分化情况将g-NENS分为1型,2型和3型。