Nat Genet:清华大学新研究助力探索早期发育相关疾病!

2019-12-19 不详 转化医学网

2019年12月17日,清华大学生命学院颉伟研究组在《自然-遗传》期刊以长文形式报道了题为“表观遗传组学分析揭示了原肠运动时期始发态多能性的独特染色质状态”(Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency)的研究论文。

2019年12月17日,清华大学生命学院颉伟研究组在《自然-遗传》期刊以长文形式报道了题为“表观遗传组学分析揭示了原肠运动时期始发态多能性的独特染色质状态”(Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency)的研究论文。



该研究通过多种高灵敏染色质表观遗传学分析手段,发现小鼠植入后胚胎中的始发态多能性(primed pluripotency)细胞具有独特的染色质结构,包括发育调控关键基因的启动子区域富集非常强的H3K4me3/H3K27me3修饰(super-bivalency)。这一重要发现不仅阐明了细胞命运决定过程中动态的染色质调控机制,还为体外系统更好的模拟植入后胚胎发育以及探索早期发育相关疾病提供了新的研究方向。


早期胚胎发育过程中染色质状态的动态调控

在胚胎植入子宫后,伴随着原始态多能性(naive pluripotency)向始发态多能性的转变,囊胚中的内细胞团(inner cell mass)分化为胚区的上胚层(epiblast)和胚外区的脏内胚层(visceral endoderm)。由上胚层细胞进一步通过原肠运动形成的外胚层(ectoderm)、中胚层(mesoderm)与内胚层(endoderm)则构成了器官发生以及个体形成所需要的细胞基础。

然而,由于谱系之间分离比较困难以及细胞数量稀少,人们对此过程中染色质调控机制仍然知之甚少。在该研究中,研究人员首先在小鼠胚胎发育的6.5与7.5天分离了不同胚层,并利用颉伟课题组前期开发的STAR ChIP-seq、miniATAC-seq与sisHi-C技术,系统地检测了组蛋白修饰(H3K4me3、H3K27me3、H3K27ac)、染色质开放性以及三维基因组高级结构的状态。

研究人员发现,E7.5天外胚层的增强子在E6.5天上胚层中已经提前开放,而中胚层与内胚层中的增强子则是重新建立的,支持外胚层是上胚层细胞分化的默认分化状态的假说。

有趣的是,在具有始发态多能性的E6.5天上胚层中,研究人员发现H3K4me3与H3K27me3在一部分发育基因的启动子及附近区域呈现非常强的双价(bivalency)分布模式,研究人员定义这种状态为super bivalency。Super bivalency能够持续到外胚层,而在植入前早期胚胎、E5.5天上胚层、E7.5天中胚层、内胚层以及小脑、心脏等体细胞中均不能被检测到。此外,通过sisHi-C实验,研究人员发现在E6.5天上胚层中被super bivalency标记的基因在三维空间中具有很强的互相作用。

为了研究super bivalency是如何建立的,研究人员聚焦于KMT2B(又名MLL2、WBP7),一种负责特异性催化双价基因启动子区域H3K4me3的甲基转移酶。前期研究表明,该催化酶在受精卵中的缺失会导致小鼠胚胎发育致死,而从E11.5天敲除却并不影响胚胎发育。研究人员发现,在受精卵时期敲除Kmt2b将会影响E6.5上胚层中双价基因启动子区域的H3K4me3建立。与此同时,super bivalency标记的基因的三维空间作用也伴随下降。最后,super bivalency的缺失极大地影响了与部分发育核心调控基因的激活。

综上所述,该研究在小鼠植入后胚胎发育过程中系统地研究了表观遗传组建立的分子机制,发现了始发态多能性中存在super bivalency这一独特的染色质状态,并进一步揭示了在细胞命运决定过程中super bivalency参与调控核心基因转录激活的重要功能。

原始出处:

Yunlong Xiang, Yu Zhang, Qianhua Xu, et.al. Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency. Nature Genetics 16 December 2019

作者:不详



版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (7)
#插入话题

相关资讯

BMC Biol:特殊基因或对人类早期发育非常关键

来自牛津大学的研究者近日发现了一系列基因在早期人类发育中扮演着重要角色,这一研究发现为解开数十年的谜题提供了新的思路,该研究刊登于BMC Biology杂志上。进化生物学家Peter Holland和他的学生Anne Booth鉴别并且命名了这些基因,包括Argfx,Leutx,Dprx和Tprx基因,相关数据发表于2002年的人类基因组计划上;这些基因属于同源异型框,而且我们都知道有其它的同源异

Sci Rep:洞悉肺部的早期发育

对于大多数早产的婴儿来说,并不是他们的小体型使他们的生命变得困难。更确切地说,是他们肺部的发展,决定了生与死的区别。

Cell Res:RNA干扰被发现是人类神经早期发育的“保护伞”

我国科研人员的一项最新研究表明,人神经前体细胞可以利用RNA干扰抗病毒免疫抵抗寨卡病毒感染。这一研究首次发现RNA干扰抗病毒免疫机制在人类神经发育过程中的关键作用,相关研究成果近期以封面文章的形式发表在国际知名期刊《细胞研究》上。